PSI-process on 6” Si substrates

H. Plagwitz, B. Terheiden, R. Brendel
Re-use of Si growth substrate

10-fold use

Institut für Solarenergieforschung Hameln

R. Brendel, 14th EU-PVSEC, Barcelona 1997, p.1354
R. Horbelt et al., 31st IEEE PVSC, Orlando 2005
Efficiency potential of thin-film Si wafers

Assumptions:
- Good optics 90% of Lambertian ✓
- \(\tau = 1 \, \mu s \) 16 \(\mu s \) measured ✓
- \(S = 100 \, \text{cm/s} \) 120 cm/s measured ✓

Simulated efficiency:
- \(\eta = 18 \% \)
- \(W = 2.5 \, \mu m \)

Porous double layer

Closure of porous surface

First report on surface closure:
V. Labunov et al., Thin Solid Films 137, 123 (1986)

Institut für Solarenergieforschung Hameln

Building separation layer

First report on separation layer formation:
Utilize out-diffusion from growth substrate!

Institut für Solarenergieforschung Hameln
Boron autodiffusion: cell result

$V_{OC} = 588 \text{ mV}$
$J_{SC} = 33.3 \text{ mA/cm}^2$
$FF = 74.2 \%$

$\eta = 14.5 \%$

Independently confirmed @ ISE CalLab

Cell area: 4 cm2, thickness 24 µm
FS: a-Si/SiN RS: B-BSF

$V_{OC} = 616 \text{ mV}$
$J_{SC} = 29.0 \text{ mA/cm}^2$
$FF = 78.8\%$
$\eta = 14.1\%$

Cell area : 95.5 cm2
Si film thickness : 26 μm

Textured on the illuminated side

Institut für Solarenergieforschung Hameln
Rear contact - rear junction
PSI-module

Glass
SiN/a-Si:H
Al
Emitter
Base
a-Si:H
SiN
4S interconnection

- 2 µm deep trenches to contact p-type base (etched from the front)
- Short circuit prior to trench etching from the back
- Trenches separating the cells (etched from the back)

Top view, rear side

Institut für Solarenergieforschung Hameln
FS & RS: a-Si/SiN

Textured on the non-illuminated side

Institut für Solarenergieforschung Hameln

\[V_{OC} = 3754 \text{ mV} \]

\((V_{OC} = 626 \text{ mV/cell})\)

\[I_{SC} = 388 \text{ mA} \]

\((J_{SC} = 28.4 \text{ mA/cm}^2)\)

\[FF = 67.3\% \]

\[\eta = 12.0\% \]

Area: 9 x 9.1 cm\(^2\)

Si film thickness: 24 µm
COSIMA contact formation

COSIMA: Contacts to a-Si:H passivated wafers by Means of Annealing

- a-Si:H deposition: PECVD, 225 °C
- Al deposition
- Annealing: 300 °C, 5 min

H. Plagwitz, M. Nerding, N. Ott, H. Strunk, and R. Brendel
“Low-temperature formation of local Al contacts to a-Si:H-passivated Si wafers,” Prog. Photovolt. 12, 47 (2004)

Institut für Solarenergieforschung Hameln
Summary

- Efficiency of large area PSI solar cell as high as 14.1 %
- Utilization of porous Si as dopant source: $\eta = 14.5$ %
- Surface passivation by a-Si:H
 - Interface defect density lower than 10^9 cm$^{-2}$
 - Enhanced open-circuit voltage
Acknowledgements

- A. Wolf, R. Horbelt for their contribution to this work.
- Funding was provided by the German BMU under contract no. 0329816E.