Arbeitsgebiete AG Pfnür

- 1. Epitaktische Isolatorschichten
- 2. Neuartige Strukturierungsverfahren
- 3. Metallische Nanodrähte
- 4. Molekulare Elektronik

Ultradünne, kristalline dielektrische Schichten: die Suche nach neuen Gate-Dielektrika

BaO

SrO

 $a_0 (Si) = 5.43 \text{ Å}$ $\epsilon_r (SiO_2) = 3.9$ $E_G (SiO_2) = 8.9 \text{ eV}$ amorphous (SiO_2)

Growth of vicinal BaO/SrO layers

(nominally) polar step formationcritical step density for overgrowth of steps

 $k_x - k_z plot$ $k_x - k_v plot$ (00) (00) 5.0 127.1 - 90 102.9 4.5 Electron energy (eV) 4.0 -- 80 S=K⊥d/2 π .6 - 81.3 4% 70 3.5 - 62.3 3.5 - 60 3.0 45.7 -70 % 0'% k||(%SBZ) -30 % 30 % **o**'% **70** % k||(%SBZ) 100 % 0% -100 % J. Zachariae and H. Pfnür, Surf. Sci. 600 (2006) 2785 kjj (%SBZ)

Chemical analysis of the interface

XPS-measurement of the Si2p-spectra

Electronic structure: Band gap and excitonic

Electronic structure: Band gap and excitonic

Band alignment depending on the kind of interface

Tunable band alignment by different intermediate layer !

Electrical characterization

high charge density in oxide 1,1.10¹² cm⁻²

gradual increase \rightarrow high surface state density D_{it}

small hysteresis \rightarrow low density of mobile charges in oxide

Neuartige Strukturierungsverfahren: SEM + STM im UHV

Kombination mit gestufter Fläche

100 nm

TiSi contact pads

Kombination mit Selbstorganisation: Blei auf Si(557)

Umordnung der Fläche durch Bleiadsorption

0

Umordnung der Fläche durch Bleiadsorption

Macroscopic dc measurement

modified v.d.Pauw geometry

Measurements parallel and perpendicular to step edges

TiSi₂ contacts

High temperature annealing (T = 640 K)

Defects unimportant

Transport: Localization due to Fermi-nesting

Transition: Complete and incomplete Fermi-nesting

Einfache organische Säuren als Konditionierungsmittel

Modell:

MgSo4: Adsorptionsgeometrien für organische Säuren

Moleküle gedreht:

Quasi-aromatisches System von SA gestört!

Anderer Mechanismus der Kontaktaufladung: Obige Säuren inaktiv!

Kontaktierung von Einzelmolekülen

Ferrocen-dithiol

Rotationsfreiheitgrad der Komplexbindung (Rechnung: 40meV)

Bindung zum Kontakt über SH,CN,.....

Hohe Leitfähigkeit

AG Butenschön

Ultradünne Kontakte

Optimierte 3D Geometrie
Herstellung über e-Lithographie
Epitaktisches System Ag/Si(100)
Öffnen: Elektromigration bei T=80K
Schließen des Kontaktes (T=300K)

Öffnen des Kontaktes Durch Elektromigration

Lücke mit STM-Spitze zugänglich!

Leitfähigkeit eines FDT-Moleküls

FDT induziert

Kontakt offen: 10⁶ Ohm Kontakt geschlossen: 10² Ohm

Leitfähigkeit: ~25 µA/V (0.35 G_O)

C₁₁ : 1.2 nA/V (exp. 17nA/V) OPE: 1.7 μA/V OPV: 2.8 μA/V

Thiolat gebundene Systeme (metallic)

Dissoziation an Defekten ?

Sub-Struktur: Molekülresonanzen (spannungsinduzierte Übergänge)

(Ruitenbeek, PRL 2006)

Transport Rechnungen: V. Maslyuk, AG I. Mertig,Uni Halle-Wittenberg

Ausblick

- Grenzflächeneigenschaften zunehmend wichtiger
- Quantenbauelemente auch bei Raumtemperatur realisierbar
- Eingang in Alltags-Elektronik?
- Interdisziplinäres Arbeitsgebiet