LNQE-Kolloquium Hannover, 30.11.2005

Von Mikro zu Nano - Herausforderungen an die Messtechnik in neuen Technologien

G. Wilkening PTB, Braunschweig

Messaufgaben Messmethoden Vergleichbarkeit Rückführung Kalibriernormale Messungen Schlussfolgerungen

Physikalisch-Technische Bundesanstalt

Mikrosystemtechnik -

- IC-Technologie -
 - Nanotechnologie

Messaufgaben in den Mikro- und Nanotechnologien

	Mikrosy	stemtechnik	IC-Techi	nologie	Nanoteo	chnologie
Struktur	Strukturen auf Masken, Wafern oder anderen Substraten; Einzelstrukturen; verschiedenste Größen		Strukturen auf Masken und Wafern		Strukturen auf Wafern o. a. Substraten; Einzelstrukturen auf Substraten adsorbiert	
Umgebung	Luft; (Vakuum)		Luft; Vakuum		Luft; Vakuum; UHV; Flüssigkeit	
Material	Si; Keramiken; Glas; Metalle; Kunststoffe; Maskensubstrate; Photoresiste		Si und andere Halbleiter; Maskensubstrate; Metalle; Photoresiste		Si und andere Halbleiter; Keramiken; Metalle; Moleküle; Makromoleküle; biologisches Material;	
Probengröße	Masken und Wafer bis zu 6" (oder mehr); Einzelstrukturen bis zu 50mm x 50mm; Dicke bis zu 25mm		Masken und Wafer aller Größen (bis 12") Wafer und andere Subst Teile von Substraten bis 10mm; Dicke bis zu einig		Substrate bis zu 4"; en bis 10mm x :u eingen mm	
Messtyp	"2 1/2" – 3-dimensional; Aspektverhältnis bis zu 50 (oder mehr)		~ 2-dimensional; Aspektverhältnis <	1	"2 1/2" (– 3)-dimensional; Aspektverhältnis ~1	
Positionier- bereich	bis zu 150mm x 150mm x 25mm		175mm x 175mm I 300mm (x einige 1	ois 300mm x 0µm)	bis zu 100mm x 100mm x < 5mm; überwiegend 10mm x 10mm x 1mm	
Messbereich	bis zu 50mm x 50mm x 25mm		175mm x 175mm f 25mm x 32mm für 10µm)	für Masken; dies (x einige	~ 100µm x 100µm	x 10µm
Messaufgaben:		+ mechanische		+ elektronische		+ mechanische,
Abstand Breite Höhe Schichtdicke Rauheit/Textur	< 50mm > 1µm < 1mm < 1µm < 1µm rms	Eigenschaften	< 175mm > 80nm < 10µm > 2nm < 10nm rms	Eigenschaften	< 100µm < 1µm < 250nm < 50nm < 50nm rms	optische, elektronische, magnetische, chemische, molekulare Eigenschaften

Dr. Peter Schloßmacher (IMF I)

168. PTB-Seminar "Dimensionelle Messtechnik für Mikrostrukturen"

Forschungszentrum Karlsruhe

Technik und Umwelt

Industrieforum Mikrofertigungstechnik (FIF)

Vermessen von Rotoren einer Mikrozahnringpumpe (I)

Aufgabenstellung

Lösungsversuch

maß 1,35 mm beträgt;

Material: **ZrO**₂ (spritzgegossen)

optisch mit Lichtmikroskop und CCD-Kamera

mit **lateraler Messgenauigkeit < 2 μm** ist Außendurchmesser von Rotoren bestimmen, deren Soll-

Probleme

- bei Verwendung von sichtbarem Licht liegt maximale Auflösung im Mikrometerbereich
- 1000 Pixel reichen nicht aus
- im REM: maximale Bildgröße 768 × 1024 Pixel

Forschungszentrum Karlsruhe Technik und Umwelt

Industrieforum Mikrofertigungstechnik (FIF)

Mechanisch gefertigte Mikrostrukturen

Aufgabenstellung:

3D-Mikrostrukturen (auf max. 100 cm²) mit steilen Kanten, großer Höhe und z.T. glatten, spiegelnden Oberflächen zu messen sind:

- Iückenlose Topographie, ersatzweise Linienprofile
- Rauheit mit Sub-µm-Genauigkeit (10-100 nm)

Materialien: Stahl, Kupfer, Messing, Kunststoffe, Aluminium-Legierungen

Lösungsversuch

- Lichtmikroskopie mit Autofokus;
- mit Einschränkung okay: FRT im IMF III;

Probleme

- spiegelnde Flächen,
- steile Kanten, dadurch Messlücken,
- Strukturhöhe größer als Messbereich in z

2. "HIGH ASPECT RATIO" - STRUKTUREN

Advanced Silicon Etching (ASE)

bis 10

Röntgentiefenlithographie mit PMMA

10-50

UV-Lithographie mit SU-8

Rauheit Profil **P** Form Tiefe

Messaufgaben in der Mikrosystemtechnik

Struktur	Material	Messaufgabe	Messbereich	Toleranz / geford. Messuns.
Mikrosystemte	chnik			
Düse in Zerstäuber	Si	Innenzylinder	Tiefe: 5µm Durchm.: 2µm	0,2μm 0,1μm
Mikrogetriebe	ZrO ₂	Außendurchm.	1,35mm	/< 2µm
Düsenplatte	Si	Bohrungen: Abstand Durchmesser	10mm x 48m 1mm; 30µm	1µm
Mikrospektro- meter Gitter / Faserkanäle	PMMA	Form; Lage; Dimension	15mm x 60mm x 0,5mm	/10nm - 100nm
Mikroröhre	Keramik	Innenzylinder Außenzylinder	Tiefe 10mm Durchm.: 2,5mm Durchm.: 25µm	1µm 0,1µm
Bohrer	HSS; Cobalt	Durchm.; Formelemente	Länge bis 5mm Durchm.: ≥ 25µm	4µm

Messaufgaben in der IC-Technologie

Measurand or	2004, optical	2007 , optical	2013 , EUV
specification for production control tolerances	lithography with ArF 193 nm	lithography with ArF 193 nm and	lithography with 13 nm in vacuum
		water immersion	
DRAM half pitch (nm)	90	65	32
MPU printed Gate Length (nm)	53	35	18
Wafer printed gate CD control (nm)	3.3	2.2	1.2
Wafer dense line CD control (nm)	11.0	8.0	3.9
Wafer line width roughness (nm, 3 s) (new definition discussed)	3.0	2.0	1.0
Wafer CD metrology tool precision for isolated lines (nm, 3 s, P/T=0.2)	0.7	0.4	0.2
Wafer CD metrology tool precision for dense lines (nm, 3 s, P/T=0.2)	22	1.6	0.8
Wafer overlay control (nm)	32	23	12.8
Wafer overlay output metrology precision (nm, 3 s)	3.2	2.3	1.3
Mask minimum primary feature size (to be controlled for CD, placement, nm)	148	98	52
Image placement (multipoint 4X, nm)	19	14	8
Mask image placement metrology (precision, P/T=0.1, nm)	1.9	1.4	0.8
Mask CD metrology tool precision (P/T=0.2 for isolated lines, binary, nm)	0.8	0.4	0.3
Mask CD metrology tool precision (P/T=0.2 for dense lines, nm)	1.8	1.0	1.1
PSM phase mean deviation, degree	2	1	-
Phase metrology precision, P/T=0.2, °	0.4	0.2	-
Equivalent oxide thickness (EOT) (nm) for stacked capacitor	2.3	0.8	0.5
DRAM stacked capacitor dielectric physical thickness (nm)	12.7	10	7.5
DRAM capacitor dielectric physical thickness meas. precision (nm, 3 s)	0.05	0.04	0.03

From:

Int'l Technology Roadmap for Semiconductors (2004)

Messaufgaben in der IC-Technologie

Messung der ,pattern fidelity'

Struktur	Material	Messaufgabe	Messbereich	Toleranz / Precision
IC-Technologie	(aus Int'l Technolo	n bgy Roadmap for Semiconducto	brs, 2004)	
Linien (Einzel / Mehrfach)	Chrom auf Quarz	CD control	25mm x 32mm	0,8 nm / 1,8 nm
Konzentrische Overlay- Strukturen	Si	Overlay control	25mm x 32mm	32 nm 3,2 nm
Kreuzförmige Markierungen	Chrom auf Quarz	Mask image placement	150mm x 150mm	19 nm 1,9 nm

Plane und sphärische Röntgenspiegel

Ni/C multilayer (PLD)

- hochpräzise und reproduzierbare Schichtdicke der Einzelschichten
- Dicke einer Schichtperiode (Ni+C): 3,23 nm

Elektronenstreuung am Silicium-Substrat und am multilayer

Quelle: IWS Dresden, Germany

MFM (magnetic force) - Bilder von Domänen

20 µm

MFM-Bild von magnetischen Domänen auf einer Speicherplatte

MFM-Bild

Effekte beim head/disk crash

Einzeldomän-Co-Partikel (240 nm x 160 nm); die Magnetisierung des mittleren Partikels ist bewusst geändert worden.

SNOM (nahfeldoptisches) Bild von Quantum Dots

Bildfeld 7 µm x7 µm

Shear Force (Topografie)

SNOM Bild; Lichtquelle: He-Cd laser (442 nm)

Quelle: NT-MDT, Russland

Messaufgaben in der Nanotechnologie

Struktur	Material	Messaufgabe	Messbereich	Toleranz / geforderte Messuns.
Nanotechnolog	ie			
Schichten auf Festplatte	organisch und anorganisch	Dicke verschiedener Schichten; Rauheit	100mm x 100mm x einige 10nm	/< 1nm
Multilayer- Röntgen- Reflektoren (bis zu 100 Schichten)	anorganisch	Dicke der Einzelschichten	Einige cm ² bis + 1m ²	/ < 0,1nm
Substrate f. Röntgenspiegel	Keramik; Quarz	Rauheit der Oberfläche	Einige cm ²	/ < 0,1nm rms
Magn. Strukturen auf Festplatten	Metallische, organische Schichten	Form der magn. Domänen Magnetischer Fluss	100µm x 100µm x einige 10nm	einige nm
Quantum dots	Halbleiter	Fluoreszenz; Größe	100µm x 100µm x einige 10nm	/einige nm
Nanopulver	C; Oxide, Metalle	Durchmesser; <i>"Chemie"</i> Rauheit	100µm x 100µm x 100nm	15 nm ~ 1nm rms
Gitter f. Faserkommuni- kation	Glas; Kunststoff	Gitterkonstante Einzelabstände	100µm x 100µm x	< 1nm < 1nm

Messaufgaben und geforderte Unsicherheiten

	Mikrosystemtechnik	IC-Technologie	Nanotechnologie	
Struktur	Strukturen auf Masken, Wafern oder anderen Substraten; Einzelstrukturen; verschiedenste Größen	Strukturen auf Masken und Wafern	Strukturen auf Wafern o. a. Substraten; Einzelstrukturen auf Substraten adsorbiert	
Umgebung	Luft; (Vakuum)	Luft; Vakuum	Luft; Vakuum; UHV; Flüssigkeit	
Material	Si; Keramiken; Glas; Metalle; Kunststoffe; Maskensubstrate; Photoresiste	Si und andere Halbleiter; Maskensubstrate; Metalle; Photoresiste	Si und andere Halbleiter; Keramiken; Metalle; Moleküle; Makromoleküle; biologisches Maerial;	
Probengröße	Masken und Wafer bis zu 6" (oder mehr); Einzelstrukturen bis zu 50mm x 50mm; Dicke bis zu 25mm	Masken und Wafer aller Größen (bis 12")	Wafer und andere Substrate bis zu 4"; Teile von Substraten bis 10mm x 10mm; Dicke bis zu eingen mm	
Messtyp	"2 1/2" – 3-dimensional; Aspektverhältnis bis zu 50 (oder mehr)	~ 2-dimensional; Aspektverhältnis < 1	"2 1/2" (– 3)-dimensional; Aspektverhältnis ~1	
Positionier- bereich	bis zu 150mm x 150mm x 25mm	175mm x 175mm bis 300mm x 300mm (x einige 10µm)	bis zu 100m mm; überwiegen 2D 2 1/2D x 1mm	
Messbereich	bis zu 50mm x 2D Profil \Rightarrow	$\begin{array}{ll} 175 \text{mm x } 175 & ; 25 \text{mm m} \\ \text{x } 32 \text{mm für d} \end{array} \Rightarrow 2 \text{D Form } \text{m} \end{array}$	~ 100µm x 1 Profil	
Messaufgaben: Abstand Breite Höhe Schichtdicke Rauheit/Textur	< 50mm > 1μm < 1mm < 1μm < 1μm < 1μm < 1μm rms	 < 175mm > 80nm < 10µm > 2nm < 10nm rms 	< 100µm < 1µm < 250nm < 50nm < 50nm rms + mechanische, optische, elektronische, magnetische, chemische, molekulare Eigenschaften	
Mess- unsicherheit	~ 100 Nanometer	einige Nanometer	<pre></pre>	

Messaufgaben - Übersicht

Messmethoden - Übersicht

Methode	Messt	Grenz-Aspekt-	
	lateral (µm)	vertikal (µm)	Verhältnis
1-dimensional			
Ellipsometrie	500 - einige mm	einige µm Eindringtiefe (materialabhängig)	
Röntgen- Reflektometrie	einige mm	~ 1 µm Eindringtiefe (materialabhängig)	
Streulicht	0,5 - einige mm	einige 0,1µm	
2-dimensional			
Licht-Mikroskopie	0,37 - 56 4,5 - 2200	wenige µm Schärfen- einige 10µm tiefe	
Rasterelektronen- mikroskopie (REM)	0,002 - 10 0,05 - 5000	einige 100µm Schärfentiefe	

Messmethoden - Übersicht

Methode	Ме	Grenz-Aspekt-			
	lateral (µm)	vertikal (µm)	Verhältnis		
2 1/2-dimensional					
Interferenzmikroskopie (Phasenschieb.)	0,37 - 56 4,5 - 2200	0,001 - 1 0,005 - 20	~0,4		
(Weißlicht)	0,37 - 56 4,5 - 2200	0,005 - 100 0,05 - 500	0,4 16		
Konfokale Mikroskopie	0,3 - 40 1,3 - 400	0,01 - 15 0,02 - 600	0,4		
Streifenprojektion	0,4 - 380 2 - 1000	0,4 - 6 2 - 18	0,5 1,4		
3-d-Streifenprojektion	0,4 - 2000 5 - 100 mm	0,08 - 1000 5 - 70 mm	1,4 1,4		
Koordinatenmessung (Opt. Antastung)	1 - 1 m	0,1 - 1 m	2		
REM mit Stereoauswertung	0,002 - 10 0,05 - 5000	0,005 - 10 1 - 5000	3 1,4		
Profilometrie	0,2 - 5000 2 - 100 mm	0,3 nm - 20 0,01 - 1000	0,5 0,5		
Rastersondenmikroskopie (SPM)	0,001 - 150	0,1 nm - 15	1,4		
3-dimensional					
CD-Rastersonden- mikroskopie	0,36 - 75	0,1 nm - 2,8 (15)	7		
Koordinatenmessung (taktil)	100 - 1 m	0,1 - 1 m	100		

Messmethoden - Übersicht Messbereich

Messmethoden - Aperturen und Aspektverhältnisse PB

Messmethoden - Übersicht Grenzaspektverhältnis PB

Messaufgaben - Messmethoden

Grundlage ist die Kalibrierung der Geräte mit geeigneten Normalen

- Bestimmung der Abbildungseigenschaften z.B.
 - Referenzebene (Bildebene, Scanebene, ..)
 - Wechselwirkungsbereich (eff. Fokusbereich, Tasterform, ..) und deren Berücksichtigung
- "Grundkalibrierung" des Koordinatensystems (x, y, z, **Đ**)
- Aufgabenbezogene Kalibrierung z.B.
 - Linienbreite
 - Rauheitskennwerte
 - Kontur
 - Form

Zur Erreichung kleinster Unsicherheiten müssen die spezifischen Eigenschaften des Sensors verstanden sein

Vergleichbarkeit - Eigenschaften verschiedener Mikroskope

SiO₂ (20 nm) Linie auf Si mit und ohne Chrom-Beschichtung im Phasenschiebemodus (IM)

Vergleichbarkeit - Eigenschaften verschiedener Mikroskope

SiO₂ (20 nm) Linie auf Si ohne Chrom-Beschichtung im Weißlichtinterferometer-Modus

Vergleichbarkeit - Eigenschaften verschiedener Mikroskope

SiO₂ (20 nm) Linie auf Si ohne Chrom-Beschichtung im konfokalen Modus

Geometrische Effekte: Reflexionen in einer V-Nut; konfokales Mikroskop

Objektive: 10X

20X

Typische "Rückführbarkeitskette" am Beispiel eines Rastersondenmikroskops

Nationale Metrologie-Institute (NMI)

Anwender von SPM (Industrie, Universitäten, Institute, etc.)

Definition der SI-Einheit

Messung am aktuellen Objekt

Kalibriernormale - "Grundkalibrierung"

Kalibriernormale – Beispiel Stufenhöhe

PIB

Kalibriernormale – Beispiel Stufenhöhe

📃 🖃 🗙 MProfile 11 Lines Average 200511ay12.sis 1 of 6 Topography forward.prf 💻 🗆 🗙 🛐 Main Window 200511ay12.sis 1 of 6 Topography forward 200511ay12.sis 1 of 6 Topography forward Z-range: 5.088 [nm] ₽. And the addition of the Y-range: 20 [µm] 0 🗠 Profile 11 Lines Average 200511av12 sis1of6p.bcr.prf 📮 🗆 🗙 W-graph All Mary Martin . -2 WARDWITCH 무, -10 ó 10 X-range: 20 [µm]

Monoatomare Stufen auf Si (111): 0,314 nm

Kalibriernormale - "aufgabenbezogene Kalibrierung"

B

Kalibriernormale - Messmethoden

Messung der Dimension von Mikrostrukturen: schmale Gräben und Löcher

Prototyp eines langen Cantilevers mit gewinkelter Spitze

In Kooperation mit

IHT TU Braunschweig
Mahr GmbH, Göttingen

Messung der Dimension von Mikrostrukturen: schmale Gräben und Löcher

Messungen – Kalibrierung Linienbreite

Messung der Linienbreite (CD) von Kalibrierstrukturen auf Masken

Messungen – Kalibrierung Linienbreite

Messungen – Kalibrierung Gitterkonstante

520 nm

Messungen – Kalibrierung Gitterkonstante

Metrology Large Range SPM

Nanopositioniersystem (SIOS Messtechnik GmbH) Schnelle z-Positionierung (PI GMBH)

Messungen – Kalibrierung Gitterkonstante

Messungen – Kalibrierung "3D-Normal"

Kalibrierung der Lage von Nanomarkierungen auf 3D-Struktur

Pt Stufenpyramide mit 'Nanomarkierungen' für die Kalibrierung von REM- Stereogrammetrie – kalibriert durch Metrology SFM

Messungen – Kalibrierung "3D-Normal"

Metrology Scanning Force Microscope (Veritekt B/C)

Messungen – Kalibrierung "3D-Normal"

Metrology Scanning Force Microscope (Veritekt B/C)

3-axes interferometry for displacement measurement

Measurement range 75µm x 15µm x 15 µm

Messungen – lateral strukturierte Grenzflächen

Untersuchung von regelmäßigen Strukturen in Grenzflächen

PTB Teststruktur: In SiO₂ geätzte Strukturen (10 nm tief)

Abbildungen der Oberfläche des Testsystems in die reziproke Ebene (DXRS, rechts) und in den realen Raum (LR-SPM, links).

PB Messungen – lateral strukturierte Grenzflächen

Diffuse Röntgenstreuung / Reflektometrie

Reflektometer mit Drehanode

Elektronen Speicherring BESSY II (Berlin) als einstellbare Lichtquelle

PTB

BESSY II

Main parameters: ring circumference electron energy max. ring current beamlines

240 m 1.7 GeV

250 mA

36

Undulato

Messungen – Quantum dots

Photolumineszenz-Spektrum eines single quantum dot

Messungen – *Quantum dots*

Konfokale Spektroskopie bei niedrigen Temperaturen

Messungen – *kombiniert optisch / SFMikroskopisch*

microscope

Messungen – kombiniert optisch / SFMikroskopisch PB

Messungen – kombiniert optisch / SFMikroskopisch

Interferenzmikroskop + SPM

Gegenwärtiger Stand

- *Im Prinzip* werden die Messaufgaben von vorhandenen Messmethoden abgedeckt
- Laterale Auflösungen ständige Herausforderung
- Methoden müssen häufig kombiniert werden
- Vergleichbarkeit nur eingeschränkt vorhanden
- Kalibriernormale zur Sicherung der Vergleichbarkeit (und der Rückführung) decken nicht die erforderlichen Messbereiche und Messaufgaben ab.
- Verlässliche Modelle zur Beschreibung der WWen
- Normale insbes. f
 ür Rauheit, Form und 'anwendungsnahen' Einsatz
- Normen und Richtlinien

... mit Beiträgen von:

H. Bosse

U. Brand

G. Dai

H.-U. Danzebrink

L. Doering

T. Dziomba

L. Koenders

Vielen Dank!