Funktionalisierte nanoporöse Oxide: Synthese und Anwendungsbeispiele

Functionalized nanoporous oxides: synthesis and examples for potential applications

PD Dr. Michael Wark

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Universität Hannover

Nanostructured oxidic host materials

very high surface areas: about 1000 m²/g

Surfactants or block-co-polymers as structure directing units

In aqeuous solutions amphiphilic surfactants or block-co-polymers form micelles;

with increasing surfactant concentration: spherical micelles \Rightarrow rod-like micelles \Rightarrow arrangement of micelles.

On the surface of the micelles the oxide monomers and oligomers can be arranged and condensate

Mechanism of formation

Cooperative effect between surfactants (partially micelles formed)

and

anionic silica (or titania) mono- or oligomers

Sol-gel-processing: formation of mesoporous SiO₂ or TiO₂ films

Transparent SiO₂ films:

- Dissolution of block-co-polymer P123 (HO(CH₂CH₂O)₂₀[CH₂CH(CH₃)O]₇₀(CH₂CH₂O)₂₀H) addition of tetraethylorthosilicate (TEOS), 5 min stirring, ageing for 20 h at 35°C.
- Deposition on e.g. glass slides by dip-coating (withdrawal rate: 1 mm s⁻¹) at 25°C. (\Rightarrow EISA process)
- Calcination at 350°C for 2 h (heating rate: 1°C min⁻¹).

EISA: evaporation induced self-assembly

D. Zhao, G. Stucky et al. Adv. Mater. 10 (1998), 1380.

Mesoporous SiO₂ films on glass

Mesoporous SiO₂ films as low-k materials

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Universität Hannover

Mesoporous SiO₂ films as low-k materials

F.K. de Theije (Philips) et al., J. Phys. Chem. 107 (2003), 4280

Influence of porosity on dielectric

constant and structuring 4.6 b) ♦ 50% MTMS in TEOS, F127 ▲ 60% MTMS in TEOS, Brij76 4.0 dielectric constant 3.4 2.8 2.2 1.6 1.0 20 40 60 80 0 100 porosity (%)

Figure 11. (a) Low-*k* stack after etching. (b) Same stack after resist stripping in O_2/N_2 . Trenches are 200 nm wide. (1) Si_3N_4 , (2) SiO_2 , (3) low-*k*, (4) photoresist, and (5) SiC. The trenches show some undercutting (a) and bowing (b).

Mesoporous SiO₂ films as low-k materials

Filling the pores of mesoporous oxide films

Idea: Different layers on a chip: insulating (low-k layer), conducting (hig-k layer)

Easiest method for filling of the pores: adsorption from gas phase but chemical coupling to wall necessary

Filling the pores of mesoporous oxide films

CdS nanoparticles in mesoporous SiO₂ powders (M-41S)

1. Step: Modification of the inner surface of SiO₂-M41S

H. Wellmann, M. Wark et al., Microp. Mesop. Mater., 44-45 (2001), 419.

Formation of CdS or CdSe nanoparticles in the films

Two different routes are possible:

- Impregnation or dip-coating of the films with aqueous CdAc₂
 ⇒ inhomogeneous distribution of CdS/CdSe particles (after treatment with H₂Se, even at low loadings)
- Bulk-CdSe is formed.

dip-coating

- Addition of CdAc₂ directly during the synthesis of the films
 ⇒ homogeneous distribution of the Cd²⁺ ions
 - \Rightarrow homogeneously colored films
- Formation of 2-3 nm CdSe particles

Direct addition of CdAc₂ to the synthesis gel (template solution)

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

UV/vis spectra of CdSe loaded mesoporous SiO₂ films

- The films contain nanometersized CdS and CdSe particles.
- As deduced from the structured first derivatives of the absorption spectra (quantum size effects), most particles possess diameters of 2-3 nm.

SnO₂ nanoparticles in mesoporous oxides

Concept of modification of silica thin films with dyes

(PTS)

Stud. Surf. Sci. Catal. 142 (2002), 1067

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Mesoporous SiO₂ films: texture, accessibility of inner volume

SEM, TEM

Silica film	Roughness factor	Porosity	Pore diameter
Pristine	122	60%	6.85 nm
After silylation	82	40 %	6.27 nm

Surface accessibility: 70-75% (electrochemical probe)

Application as fluorescence sensing system for SO₂

Optical switches: spiropyrans in the pores of zeolite Y

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Universität Hannover

Switching of spirooxazine anchored in mesoporous oxides

Switching in mesoporous hosts (larger pores, no sterical hindrance

(from photomerocyanine to new cis-cisoid form)

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Immobilization of discrete electroactive species in SiO₂ films

Propagation mechanism:

-Electron transfer **from** electrode:

heterogeneous + homogeneous (hopping)

-lon transfer to electrode (charge balance)

Self-assembled electrodes

or

Supported electrodes

Organic matrix

Inorganic matrix

Advantages:

-Robust

-High mechanical stability

-Films of controllable thickness

Mesoporous SiO₂ films: immobilization of [Fe(CN)₆]³⁻ ions

Ionic immobilization

Concentration of $Fe(CN)_6$ in silica film: 1.1.10⁻⁸ mol cm⁻² (ca. 260 µmol cm⁻³) monolayer: 2 · 10⁻¹¹ mol cm⁻²

Charge uptake: dependence on film thickness

Film thickness ratio: 1.43 Charge uptake ratio: 1.55 Hexacyanoferrate in silica film

D. Fattakhova, J. Rathousky, M. Wark, Langmuir, in press.

Silica films: covalent immobilization of ferrocene

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Silica films: covalent immobilization of ferrocene

Silica films: covalent immobilization of ferrocene

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Mesoporous TiO₂ films for photocatalysis

Model of the structure of mesoporous titania film

Mesoporous TiO₂ films: Hydrophobization

- Outgassed films functionalized with hexamethyldisilazane
 - \Rightarrow methyl groups on surface of the pores

- Heated to 100° C, and revolved for 68 hours.

Contact angles with water:

Film	Withdrawa	l rate (mm/s	s) Contact angle (°)
TiO ₂		1	< 5
TiO ₂		2	< 5
TiO ₂ /h	ydrophob.	1	44.6
TiO ₂ /h	ydrophob.	2	48.5

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Universität Hannover

Hydrophobized mesoporous TiO₂ films: Photocatalysis

Hydrophobization improves adsorption of methylene blue

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Design of dye-sensitized solar cells

http://www.mansolar.com/funktion.htm

PD Dr. Michael Wark, Institut für Physikalische Chemie und Elektrochemie

Electrodeposition of ZnO or TiO₂ / dye hybrid thin films

Experimental Setup

3-electrode set-up

reference electrode: Ag/AgCl working electrode: FTO glass as substrate counter electrode: zinc wire

With Eosin Y as dye:

Eosin Y

Desorption and re-adsorption of dye

<u>desorption</u>: 6 h in KOH-solution (pH 10.5)

<u>re-adsorption</u>: 10 min in 0.5 mM ethanolic solution (boiling)

from left to right: ZnO/EY film as deposited, ZnO/EY desorbed, ZnO/EY re-adsorbed

Highly porous electrochemically deposited ZnO or TiO₂ films

Electrodeposition in presence of a surfactant (micelle formation)

E. Michaelis, M. Wark et al., Thin solid films, **2005**, submitted

Electron Image 1

Different sulfonates as additives

Hexadecylsulfonate, micelles can be formed \Rightarrow highly porous

Sugar molecules as additives

Growth model

Electron transport in ZnO / Eosin Y films

Qualitative Model of Electron Transport in the ZnO films

Colloid-processed ZnO Nanocrystalline Film

- Grain boundaries
- Electron traps)

Slow electron transport

Electrodeposited ZnO Nanoporous film

- Lower number of grain boundaries
- Rather ordered structure

T. Oekermann, T. Yoshida, H. Minoura, K.G.U. Wijayantha, L.M. Peter, J. Phys. Chem. B 108, 8364, 2004

Conclusions

 On the inner walls of porous silica as well as titania films different functionalities (e.g. nanoparticles, dyes, hydrophobic groups) are anchored by covalent or ionic bonding. Use in e.g. optical data storage, photocatalysis, sensing, etc.

Dye-sensitized oxide electrodes (ZnO or TiO₂) can be deposited electrochemically in a one-step method.
 These materials are promising for the development of new colored and flexible solar cells.

Thanks to:

- Dr. Hartwig Wellmann (CdS and CdSe in mesoporous SiO₂),
- Dr. Yven Rohlfing (optical switching),
- Dr. Dina Fattakhova (electroactive porous oxide films),
- Cand. Chem. Jessica Tschirch, Prof. Dr. D. Bahnemann (photocatalysis),
- Dr. Torsten Oekermann, Cathrin Boeckler, Katrin Wessels, Dr. Esther Michaelis (ZnO electrodes),
- Dr. Armin Feldhoff (Hanover), Dr. Frank Krumeich (Zurich) TEM
- Dr. Jiri Rathousky (Prague) Kr adsorption
- Prof. Dr. Jürgen Caro head of the group
- DFG, VW foundation, Volkswagen AG funding

Thank you for your kind attention !!!