Elektrochemische Abscheidung von nanoporösen Metalloxid-Filmen für farbstoffsensibilisierte Solarzellen

Torsten Oekermann

Leibniz Universität Hannover Institut für Physikalische Chemie und Elektrochemie

Vortrag im LNQE-Kolloquium 29.11.2006

Overview

- Introduction and Motivation

- Solar cells as possible solution for the energy problem
- Dye-sensitized solar cells (DSSC)
- Electrodeposition of nanoporous ZnO films for DSSC using
 - Organic molecules (e.g. dye molecules)
 - Surfactants

- Photoelectrochemical properties of electrodeposited ZnO

- Electron transport properties
- Electrodeposition of TiO₂

The energy problem

Solar energy as possible solution ?

Current energy consume per year: $1.4 \times 10^{14} \text{ kWh}$ Sun Power: $P_{Sun} = 4 \times 10^{26} \text{ W}$ Sun power that reaches Earth: $P_{Earth} = 1.8 \times 10^{17} \text{ W} \rightarrow 1.6 \times 10^{18} \text{ kWh}$ power year About 10000 times the energy consume !!

How can it be used ? Assume:

- 8 h light per day , 1 kW/m² (Solar constant: 1.4 kW/m²)
- Efficiency: 10 % (typical value for commercial solar cells)
- \rightarrow Area of 700 km x 700 km needed (e.g. = 1/5 of the Sahara desert)

Loss of Energy (e.g. 30 % for 3000 km Sahara desert – Central Europe) \rightarrow Area of 850 km x 850 km (1/4 of the Sahara desert)

In principle, it is possible to satisfy the whole energy demand solely by solar energy, based on current technology !

Leibniz

niz versität Hannover

The "classical" silicon solar cell

a) monokristalline Solarzelle

b) polykristalline Solarzelle

Leibniz

Leibniz Universität Hannover

Si solar cells are expensive / consume much energy for production !

- need to have very pure silicon
- many production steps

 \rightarrow Electric energy from Si solar cells is still much more expensive than from fossil or nuclear fuels

Efficiency of solar cells

Type of cell	<u>Efficiency</u>				
	laboratory	commercial production			
	(2005)	(2003)			
Silicon (monocrystalline)	25 %	17 %			
Silicon (polycrystalline)	20 %	14 %			
GaAs (monocrystalline)	25 %				
GaAs (polycrystalline)	18 %				
InP (monocrystalline)	22 %				
	H	High efficiency, but 人			
Alternative cells: Less efficient, but much cl toxic materials					
Silicon (amorphous)	9.5 %				
Thin Film Solar Cells, e.g.:	Ć				
Copper indium gallium selenide (CIGS)	18.4 %	11 %			
CdTe	16.5 %	10.7 %			
Dye-sensitized solar cells	11.5 %	7-8 %			
Organic semiconductors	3-4 %				

Dye-sensitized solar cells (DSSC)

Dye-sensitized solar cells (DSSC)

Prototype-Cells:

- Transparent !

- Colorful !
- \rightarrow More applications !

Solar panels e.g. for house facades (Dyesol Ltd., Australia)

Preparation of metal oxide films for DSSC

T. Yoshida, K. Miyamoto, N. Hibi, T. Sugiura, H. Minoura, D. Schlettwein, T. Oekermann, G. Schneider, D. Wöhrle, *Chem. Lett.* **1989**, 599.

Electrodeposition of ZnO / dye films

T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater. 2000, 12, 1214.

T. Yoshida, T. Oekermann, et al., *Electrochemistry* 2002, 70, 470.

T. Yoshida, T. Pauporte, D. Lincot, T. Oekermann, H. Minoura, J. Electrochem. Soc. 2003, 150, C608.

Examples of used dye molecules

Effective electron diffusion coefficients D_n

From measurement of electron transport properties by IMPS / IMVS (Intensity Modulated Photocurrent / Voltage Spectroscopy):

T. Oekermann, T. Yoshida, H. Minoura, K.G.U. Wijayantha, L.M. Peter, J. Phys. Chem. B 2004, 108, 8364.

Electron transport model

T. Yoshida, T. Pauporte, D. Lincot, T. Oekermann, H. Minoura, J. Electrochem. Soc. 2003, 150, C608.

Electron transport model

Colloid-processed film made from nanoparticles Nanocrystalline film

- grain boundaries
- electron traps

Slow electron transport

Electrodeposited film = "Porous single crystal" Nanoporous film

ordered structure

Fast electron transport

→ High electron collection efficiency (not much loss of electrons by recombination during transport through the porous layer)

T. Oekermann, T. Yoshida, H. Minoura, K.G.U. Wijayantha, L.M. Peter, J. Phys. Chem. B 2004, 108, 8364.

Increase in efficiency by dye re-adsorption

Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption[†]

Tsukasa Yoshida,*^a Mamiko Iwaya,^a Hiroaki Ando,^a Torsten Oekermann,^a Kazuteru Nonomura,^b Derck Schlettwein,^b Dieter Wöhrle^c and Hideki Minoura^a

- ^a Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan. E-mail: yoshida@apchem.gifu-u.ac.jp; Fax: +81 58 293 2593; Tel: +81 58 293 2593
- ^b Physical Chemistry1, University of Oldenburg, P. O. Box 2503, D-26111 Oldenburg, Germany

^c Institute of Organic and Macromolecular Chemistry, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany

T. Yoshida, M. Iwaya, H. Ando, T. Oekermann, K. Nonomura, D. Schlettwein, D. Wöhrle, H. Minoura, *Chem. Commun.* **2004**, 400.

Increase in efficiency by dye re-adsorption

Fig. 1 Surface SEM photographs, Vis absorption spectra and photocurrent action spectra of as-deposited (a) and dye re-adsorbed (b) ZnO/eosinY hybrid thin films.

Efficiency

- before re-adsorption: 0.8 %
- after re-adsorption: 2.3 %

- Decrease in absorption
- IPCE ca. 90 %
 in the abs. maximum
 (before re-adsorption: around 50 %)
- SEM: Film becomes more porous after readsorption !

Even higher efficiencies using dye with broader light absorption. Current record: D149 dye 5.8 % at 1 sun (AM1.5)

T. Yoshida, M. Iwaya, H. Ando, T. Oekermann, K. Nonomura, D. Schlettwein, D. Wöhrle, H. Minoura, *Chem. Commun.* **2004**, 400.

Use of other structure-directing agents

- Re-adsorption of the (same or another) dye has to be done anyway
 - \rightarrow Use of other kinds of organic molecules is possible
 - → Broader range of molecules available for further optimization of film porosity, surface area, electron transport and back reaction properties etc.
- In addition: Find out principles of structure-directing in the electrodeposition of metal oxides

\rightarrow Use of

- Surfactants (often used for preparation of porous metal oxide films by sol-gel methods)
- Sugar molecules

Use of surfactants in film preparation by sol-gel method

Two ZnO phases depending on surfactant concentration

C. Boeckler, A. Feldhoff, M. Wark, T. Oekermann, Langmuir 2006, 22, 9427.

Lamellar phase (formed at high surfactant concentration)

C. Boeckler, A. Feldhoff, M. Wark, T. Oekermann, *Langmuir* **2006**, *22*, 9427. * Liu, J.F.; Ducker, W.A. J. Phys. Chem. B **1999**, *103*, 8558

Nanoparticulate phase (formed at low surfactant conc.)

C. Boeckler, A. Feldhoff, M. Wark, T. Oekermann, Langmuir 2006, 22, 9427.

Sugar molecules as structure directors

- Sugar molecules: - Easily available in many variations - Monomers, dimers,
- oligomers
- Can easily be modified (functional groups)

Leibniz

Higher concentration of glucoronic acid

1 mM instead of 0.5 mM \rightarrow porous film !

Similar porosity as films templated with eosin Y ! (But at much higher concentration !)

→ Re-adsorption of dye molecules and test in dye-sensitized solar cells (not performed yet)

Electrodeposition of TiO₂

- Good electron transport properties for electrodeposited ZnO film
- Nanoparticulate TiO₂ films more efficient than nanoparticulate ZnO
- \rightarrow Electrodeposition of TiO₂ is desirable !

Problem:

- No direct electrodeposition of crystalline TiO₂ realized yet
- Deposition of Ti-oxo-hydroxide, which must be calcined to obtain TiO₂

Leibniz

niz ersität Hannove

- Films are not porous

 \rightarrow Modification of known methods for TiO₂ deposition

Electrodeposition of TiO₂ from TiCl₃-Solution

L. Kavan, B. O'Regan, A. Kay, M. Grätzel, J. *Electroanal. Chem.*, **346** (1993) 291. L. Kavan, M. Zukalova, M. Kalbáč, M. Grätzel, *J. Electrochem. Soc.*, **151** (2004) 1.

Structure-directing agents (SDA) for TiO₂ deposition

K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann, *Electrochem. Solid-State Lett.* **2006**, *9*, C93. K. Wessels, M. Maekawa, J. Rathousky, T. Oekermann, *Thin Solid Films*, submitted.

J. Rathousky, K. Wessels, M. Wark, T. Oekermann, Stud. Surf. Sci. Catal., submitted.

Direct electrodeposition of crystalline TiO₂

Deposition of crystalline nanoparticulate film at 60-80°C ! (With SDS and BTB)

surface near region

a) calcined film, deposited with SDS
b) as deposited film
c) reference data rutile ^[1]
d) reference data anatase ^[1]

\rightarrow Rutile is formed

K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann, *Electrochem. Solid-State Lett.* 2006, *9*, C93.
K. Wessels, M. Maekawa, J. Rathousky, T. Oekermann, *Thin Solid Films*, submitted.
J. Rathousky, K. Wessels, M. Wark, T. Oekermann, *Stud. Surf. Sci. Catal.*, submitted.

Efficiency of electrodeposited TiO₂ in DSSC

TiO ₂ -film agent, reaction time film thickness	treatment	amount of adsorbed dye N ₃ nmol/cm ²	dye concentration mol/L	η / %
ALC: NO	calcined 450 °C, 1 h	261,3	0,087	0,068
SDS, 2 h 30 um	desorbed 24 h EtOH	123,4	0,041	0,011
e o pin	untreated	106,7	0,036	0,015
SDS, 30 min	calcined 450 °C, 1 h	310,6	0,207	0,789
	desorbed 24 h EtOH	13,23	0,009	0,070
10 pm	untreated	92,57	0,062	0,078
BTB, 2 h 160 μm	calcined 450 °C, 1 h	560,4	0,035	0,333
	desorbed 24 h EtOH	59,43	0,004	0,013
	untreated			0,020

Efficiency in DSSC

• calcination increases dye adsorption and efficiency

• thinner films show higher efficiency

DSSC dye sensitized solar cells

K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann, *Electrochem. Solid-State Lett.* 2006, *9*, C93.
K. Wessels, M. Maekawa, J. Rathousky, T. Oekermann, *Thin Solid Films*, submitted.
J. Rathousky, K. Wessels, M. Wark, T. Oekermann, *Stud. Surf. Sci. Catal.*, submitted.

Effect of calcination on electrodeposited TiO₂

particle size (nm)	XRD (Scherrer eq.)	TEM
as deposited film	5,8	5
calcined film	10,2	10

as deposited film

Scherrer equation

water vapor adsorption

calcined film

- as deposited films contain micropores and small mesopores (Ø ≈ 1 - 2 nm, V_{pores} ≈ 20 mm²/g)
- calcined films contain of a large amount of mesopores (Ø $>5 \text{ nm}, V_{pores} \approx 77 \text{ mm}^2/\text{g})$

\rightarrow Pores in as-deposited film too small for bulky dye molecules ?

K. Wessels, A. Feldhoff, M. Wark, J. Rathousky, T. Oekermann, *Electrochem. Solid-State Lett.* 2006, *9*, C93.
K. Wessels, M. Maekawa, J. Rathousky, T. Oekermann, *Thin Solid Films*, submitted.
J. Rathousky, K. Wessels, M. Wark, T. Oekermann, *Stud. Surf. Sci. Catal.*, submitted.

Conclusions

- Highly porous ZnO films can be electrodeposited using dye molecules as well as other organic molecules (e.g. sugar molecules)

- Electrodeposited ZnO films show superior electron transport properties compared to nanoparticulate ZnO films, leading to higher efficiency

Fully crystalline TiO₂ films could be electrodeposited from TiCl₃ solution at higher temperature (> 60 °C)

- Still low efficiency of electrodeposited TiO_2 due to the **pore size**, which has to be **optimized for use in dye-sensitzed solar cells** (using other structure-directing agents, varying concentrations of SDA, etc.)

Acknowledgement

People who contributed to experimental work and and data analysis

Dipl. Chem. Cathrin Boeckler (ZnO deposition) Dipl. Chem. Katrin Wessels (TiO₂ deposition) B.Sc. Miyuki Maekawa (photoelectrochemistry)

> Dr. Armin Feldhoff (TEM) Frank Steinbach (technician / TEM) Kerstin Janze (technician)

Prof. Dr. Jürgen Caro (group leader) PD Dr. Michael Wark (vice group leader)

Collaboration partners

Prof. Dr. Tsukasa Yoshida, Gifu University, Japan (ZnO deposition) Prof. Dr. Laurence Peter, University of Bath, UK (photoelectrochemistry) Dr. Jiri Rathousky, J. Heyrovsky Institute for Physical Chemistry, Prague, Czech Republic (adsorption measurements)

Financial support

University of Hannover Deutsche Forschungsgemeinschaft (DFG)